Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38645048

RESUMO

The multitude of DNA lesion types, and the nuclear dynamic context in which they occur, present a challenge for genome integrity maintenance as this requires the engagement of different DNA repair pathways. Specific 'repair controllers' that facilitate DNA repair pathway crosstalk between double strand break (DSB) repair and base excision repair (BER), and regulate BER protein trafficking at lesion sites, have yet to be identified. We find that DNA polymerase ß (Polß), crucial for BER, is ubiquitylated in a BER complex-dependent manner by TRIP12, an E3 ligase that partners with UBR5 and restrains DSB repair signaling. Here we find that, TRIP12, but not UBR5, controls cellular levels and chromatin loading of Polß. Required for Polß foci formation, TRIP12 regulates Polß involvement after DNA damage. Notably, excessive TRIP12-mediated shuttling of Polß affects DSB formation and radiation sensitivity, underscoring its precedence for BER. We conclude that the herein discovered trafficking function at the nexus of DNA repair signaling pathways, towards Polß-directed BER, optimizes DNA repair pathway choice at complex lesion sites.

2.
PLoS One ; 18(5): e0284394, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37167308

RESUMO

Physiological function is regulated through cellular communication that is facilitated by multiple signaling molecules such as second messengers. Analysis of signal dynamics obtained from cell and tissue imaging is difficult because of intricate spatially and temporally distinct signals. Signal analysis tools based on static region of interest analysis may under- or overestimate signals in relation to region of interest size and location. Therefore, we developed an algorithm for biological signal detection and analysis based on dynamic regions of interest, where time-dependent polygonal regions of interest are automatically assigned to the changing perimeter of detected and segmented signals. This approach allows signal profiles to be rigorously and precisely tracked over time, eliminating the signal distortion observed with static methods. Integration of our approach with state-of-the-art image processing and particle tracking pipelines enabled the isolation of dynamic cellular signaling events and characterization of biological signaling patterns with distinct combinations of parameters including amplitude, duration, and spatial spread. Our algorithm was validated using synthetically generated datasets and compared with other available methods. Application of the algorithm to volumetric time-lapse hyperspectral images of cyclic adenosine monophosphate measurements in rat microvascular endothelial cells revealed distinct signal heterogeneity with respect to cell depth, confirming the utility of our approach for analysis of 5-dimensional data. In human tibial arteries, our approach allowed the identification of distinct calcium signal patterns associated with atherosclerosis. Our algorithm for automated detection and analysis of second messenger signals enables the decoding of signaling patterns in diverse tissues and identification of pathologic cellular responses.


Assuntos
Algoritmos , Células Endoteliais , Ratos , Humanos , Animais , Sistemas do Segundo Mensageiro , Processamento de Imagem Assistida por Computador/métodos , Transdução de Sinais
3.
Methods Mol Biol ; 2609: 43-59, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36515828

RESUMO

Poly(ADP-ribose) (PAR), catalyzed by members of the poly(ADP-ribose) polymerase family of enzymes, is a posttranslational modification with a critical role in most mechanisms of DNA repair. Upon activation of poly(ADP-ribose) polymerase isoforms 1 and 2 (PARP-1 and PARP-2), the proteins of the base excision repair (BER) and single-strand break repair (SSBR) pathways form DNA lesion-dependent, transient complexes to facilitate repair. PAR is central to the temporal dynamics of BER/SSBR complex assembly and disassembly. To enhance cellular PAR analysis, we developed LivePAR, a fluorescently tagged PAR-binding fusion protein and genetically encoded imaging probe for live cell, quantitative analysis of PAR in mammalian cells. LivePAR has the advantage that it enables real-time imaging of PAR formation in cells and significantly overcomes limitations of immunocytochemistry for PAR analysis. This chapter describes the protocols needed to develop cells expressing LivePAR or EGFP-tagged BER proteins and to evaluate laser-induced formation of PAR and comparison to the assembly of the BER proteins XRCC1 and DNA polymerase-ß.


Assuntos
Poli Adenosina Difosfato Ribose , Poli(ADP-Ribose) Polimerases , Animais , Poli Adenosina Difosfato Ribose/metabolismo , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Dano ao DNA , Reparo do DNA , Lasers , Mamíferos/metabolismo
4.
bioRxiv ; 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38234836

RESUMO

Protein poly-ADP-ribosylation (PARylation) is a post-translational modification formed by transfer of successive units of ADP-ribose to target proteins to form poly-ADP-ribose (PAR) chains. PAR plays a critical role in the DNA damage response (DDR) by acting as a signaling platform to promote the recruitment of DNA repair factors to the sites of DNA damage that bind via their PAR-binding domains (PBDs). Several classes of PBD families have been recognized, which identify distinct parts of the PAR chain. Proteins encoding PBDs play an essential role in conveying the PAR-mediated signal through their interaction with PAR chains, which mediates many cellular functions, including the DDR. The WWE domain identifies the iso-ADP-ribose moiety of the PAR chain. We recently described the WWE domain of RNF146 as a robust genetically encoded probe, when fused to EGFP, for detection of PAR in live cells. Here, we evaluated other PBD candidates as molecular PAR probes in live cells, including several other WWE domains and an engineered macrodomain. In addition, we demonstrate unique PAR dynamics when tracked by different PAR binding domains, a finding that that can be exploited for modulation of the PAR-dependent DNA damage response.

5.
J Ovarian Res ; 15(1): 120, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36324187

RESUMO

A leading theory for ovarian carcinogenesis proposes that inflammation associated with incessant ovulation is a driver of oncogenesis. Consistent with this theory, nonsteroidal anti-inflammatory drugs (NSAIDs) exert promising chemopreventive activity for ovarian cancer. Unfortunately, toxicity is associated with long-term use of NSAIDs due to their cyclooxygenase (COX) inhibitory activity. Previous studies suggest the antineoplastic activity of NSAIDs is COX independent, and rather may be exerted through phosphodiesterase (PDE) inhibition. PDEs represent a unique chemopreventive target for ovarian cancer given that ovulation is regulated by cyclic nucleotide signaling. Here we evaluate PDE10A as a novel therapeutic target for ovarian cancer. Analysis of The Cancer Genome Atlas (TCGA) ovarian tumors revealed PDE10A overexpression was associated with significantly worse overall survival for patients. PDE10A expression also positively correlated with the upregulation of oncogenic and inflammatory signaling pathways. Using small molecule inhibitors, Pf-2545920 and a novel NSAID-derived PDE10A inhibitor, MCI-030, we show that PDE10A inhibition leads to decreased ovarian cancer cell growth and induces cell cycle arrest and apoptosis. We demonstrate these pro-apoptotic properties occur through PKA and PKG signaling by using specific inhibitors to block their activity. PDE10A genetic knockout in ovarian cancer cells through CRISP/Cas9 editing lead to decreased cell proliferation, colony formation, migration and invasion, and in vivo tumor growth. We also demonstrate that PDE10A inhibition leads to decreased Wnt-induced ß-catenin nuclear translocation, as well as decreased EGF-mediated activation of RAS/MAPK and AKT pathways in ovarian cancer cells. These findings implicate PDE10A as novel target for ovarian cancer chemoprevention and treatment.


Assuntos
Neoplasias Ovarianas , beta Catenina , Feminino , Humanos , Anti-Inflamatórios não Esteroides/farmacologia , beta Catenina/genética , beta Catenina/metabolismo , Carcinoma Epitelial do Ovário/tratamento farmacológico , Carcinoma Epitelial do Ovário/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Proteínas ras/metabolismo
6.
Cancers (Basel) ; 14(15)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35954352

RESUMO

Poly(ADP-ribose) (PAR) is a molecular scaffold that aids in the formation of DNA repair protein complexes. Tools to sensitively quantify PAR in live cells have been lacking. We recently described the LivePAR probe (EGFP fused to the RNF146-encoded WWE PAR binding domain) to measure PAR formation at sites of laser micro-irradiation in live cells. Here, we present two methods that expand on the use of LivePAR and its WWE domain. First, LivePAR enriches in the nucleus of cells following genotoxic challenge. Image quantitation can identify single-cell PAR formation following genotoxic stress at concentrations lower than PAR ELISA or PAR immunoblot, with greater sensitivity to genotoxic stress than CometChip. In a second approach, we used the RNF146-encoded WWE domain to develop a split luciferase probe for analysis in a 96-well plate assay. We then applied these PAR analysis tools to demonstrate their broad applicability. First, we show that both approaches can identify genetic modifications that alter PARylation levels, such as hyper-PARylation in BRCA2-deficient cancer cells. Second, we demonstrate the utility of the WWE split luciferase assay to characterize the cellular response of genotoxins, PARP inhibitors, and PARG inhibitors, thereby providing a screening method to identify PAR modulating compounds.

7.
NAR Cancer ; 3(4): zcab044, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34806016

RESUMO

Elevated expression of the DNA damage response proteins PARP1 and poly(ADP-ribose) glycohydrolase (PARG) in glioma stem cells (GSCs) suggests that glioma may be a unique target for PARG inhibitors (PARGi). While PARGi-induced cell death is achieved when combined with ionizing radiation, as a single agent PARG inhibitors appear to be mostly cytostatic. Supplementation with the NAD+ precursor dihydronicotinamide riboside (NRH) rapidly increased NAD+ levels in GSCs and glioma cells, inducing PARP1 activation and mild suppression of replication fork progression. Administration of NRH+PARGi triggers hyperaccumulation of poly(ADP-ribose) (PAR), intra S-phase arrest and apoptosis in GSCs but minimal PAR induction or cytotoxicity in normal astrocytes. PAR accumulation is regulated by select PARP1- and PAR-interacting proteins. The involvement of XRCC1 highlights the base excision repair pathway in responding to replication stress while enhanced interaction of PARP1 with PCNA, RPA and ORC2 upon PAR accumulation implicates replication associated PARP1 activation and assembly with pre-replication complex proteins upon initiation of replication arrest, the intra S-phase checkpoint and the onset of apoptosis.

8.
Cell Rep ; 37(5): 109917, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34731617

RESUMO

Assembly and disassembly of DNA repair protein complexes at DNA damage sites are essential for maintaining genomic integrity. Investigating factors coordinating assembly of the base excision repair (BER) proteins DNA polymerase ß (Polß) and XRCC1 to DNA lesion sites identifies a role for Polß in regulating XRCC1 disassembly from DNA repair complexes and, conversely, demonstrates Polß's dependence on XRCC1 for complex assembly. LivePAR, a genetically encoded probe for live-cell imaging of poly(ADP-ribose) (PAR), reveals that Polß and XRCC1 require PAR for repair-complex assembly, with PARP1 and PARP2 playing unique roles in complex dynamics. Further, BER complex assembly is modulated by attenuation/augmentation of NAD+ biosynthesis. Finally, SIRT6 does not modulate PARP1 or PARP2 activation but does regulate XRCC1 recruitment, leading to diminished Polß abundance at sites of DNA damage. These findings highlight coordinated yet independent roles for PARP1, PARP2, and SIRT6 and their regulation by NAD+ bioavailability to facilitate BER.


Assuntos
Quebras de DNA de Cadeia Simples , Reparo do DNA , DNA de Neoplasias/metabolismo , NAD/metabolismo , Neoplasias/enzimologia , Poli Adenosina Difosfato Ribose/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Sirtuínas/metabolismo , Células A549 , DNA Polimerase beta/genética , DNA Polimerase beta/metabolismo , DNA de Neoplasias/genética , Humanos , Cinética , Microscopia Confocal , Neoplasias/genética , Neoplasias/patologia , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerases/genética , Sirtuínas/genética , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/genética , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/metabolismo
9.
DNA Repair (Amst) ; 93: 102930, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-33087267

RESUMO

The enzymes of the base excision repair (BER) pathway form DNA lesion-dependent, transient complexes that vary in composition based on the type of DNA damage. These protein sub-complexes facilitate substrate/product handoff to ensure reaction completion so as to avoid accumulation of potentially toxic DNA repair intermediates. However, in the mammalian cell, additional signaling molecules are required to fine-tune the activity of the BER pathway enzymes and to facilitate chromatin/histone reorganization for access to the DNA lesion for repair. These signaling enzymes include nicotinamide adenine dinucleotide (NAD+) dependent poly(ADP-ribose) polymerases (PARP1, PARP2) and class III deacetylases (SIRT1, SIRT6) that comprise a key PARP-NAD-SIRT axis to facilitate the regulation and coordination of BER in the mammalian cell. Here, we briefly describe the key nodes in the BER pathway that are regulated by this axis and highlight the cellular and organismal variation in NAD+ bioavailability that can impact BER signaling potential. We discuss how cellular NAD+ is required for BER to maintain genome stability and to mount a robust cellular response to DNA damage. Finally, we consider the dependence of BER on the PARP-NAD-SIRT axis for BER protein complex assembly.


Assuntos
Reparo do DNA , NAD/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Transdução de Sinais , Sirtuína 1/metabolismo , Sirtuínas/metabolismo , Cromatina/metabolismo , DNA/metabolismo , Dano ao DNA , Humanos , Poli(ADP-Ribose) Polimerases/metabolismo
10.
Oncogene ; 39(12): 2583-2596, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31988453

RESUMO

Phosphofurin acidic cluster sorting protein-1 (PACS-1) is a multifunctional membrane traffic regulator that plays important roles in organ homeostasis and disease. In this study, we elucidate a novel nuclear function for PACS-1 in maintaining chromosomal integrity. PACS-1 progressively accumulates in the nucleus during cell cycle progression, where it interacts with class I histone deacetylases 2 and 3 (HDAC2 and HDAC3) to regulate chromatin dynamics by maintaining the acetylation status of histones. PACS-1 knockdown results in the proteasome-mediated degradation of HDAC2 and HDAC3, compromised chromatin maturation, as indicated by elevated levels of histones H3K9 and H4K16 acetylation, and, consequently, increased replication stress-induced DNA damage and genomic instability.


Assuntos
Cromatina/fisiologia , Instabilidade Genômica , Histona Desacetilase 1/metabolismo , Histona Desacetilases/metabolismo , Proteínas de Transporte Vesicular/fisiologia , Ciclo Celular , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Citosol/metabolismo , Replicação do DNA , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade Proteica , Proteínas de Transporte Vesicular/genética
11.
PLoS One ; 14(10): e0223725, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31596905

RESUMO

DNA repair defects have been increasingly focused on as therapeutic targets. In hormone-positive breast cancer, XRCC1-deficient tumors have been identified and proposed as targets for combination therapies that damage DNA and inhibit DNA repair pathways. XRCC1 is a scaffold protein that functions in base excision repair (BER) by mediating essential interactions between DNA glycosylases, AP endonuclease, poly(ADP-ribose) polymerase 1, DNA polymerase ß (POL ß), and DNA ligases. Loss of XRCC1 confers BER defects and hypersensitivity to DNA damaging agents. BER defects have not been evaluated in triple negative breast cancers (TNBC), for which new therapeutic targets and therapies are needed. To evaluate the potential of XRCC1 as an indicator of BER defects in TNBC, we examined XRCC1 expression in the TCGA database and its expression and localization in TNBC cell lines. The TCGA database revealed high XRCC1 expression in TNBC tumors and TNBC cell lines show variable, but mostly high expression of XRCC1. XRCC1 localized outside of the nucleus in some TNBC cell lines, altering their ability to repair base lesions and single-strand breaks. Subcellular localization of POL ß also varied and did not correlate with XRCC1 localization. Basal levels of DNA damage correlated with observed changes in XRCC1 expression, localization, and measure repair capacity. The results confirmed that XRCC1 expression changes indicate DNA repair capacity changes but emphasize that basal DNA damage levels along with protein localization are better indicators of DNA repair defects. Given the observed over-expression of XRCC1 in TNBC preclinical models and tumors, XRCC1 expression levels should be assessed when evaluating treatment responses of TNBC preclinical model cells.


Assuntos
Reparo do DNA , Neoplasias de Mama Triplo Negativas/genética , Linhagem Celular , Linhagem Celular Tumoral , Dano ao DNA , Regulação Neoplásica da Expressão Gênica , Humanos , Transporte Proteico , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/genética , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/metabolismo
12.
Chem Res Toxicol ; 32(8): 1722-1731, 2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-31328504

RESUMO

Dihydroxyacetone phosphate (DHAP) is the endogenous byproduct of fructose metabolism. Excess DHAP in cells can induce advanced glycation end products and oxidative stress. Dihydroxyacetone (DHA) is the triose precursor to DHAP. DHA is used as the active ingredient in sunless tanning products, including aerosolized spray tans, and is formed by the combustion of solvents found in electronic cigarettes. Human exposure to DHA has been increasing as the popularity of sunless tanning products and electronic cigarettes has grown. Topically applied DHA is absorbed through the viable layers of the skin and into the bloodstream. Exogenous exposure to DHA is cytotoxic in immortalized keratinocytes and melanoma cells with cell cycle arrest induced within 24 h and cell death occurring by apoptosis at consumer-relevant concentrations of DHA within 72 h. Less is known about systemic exposures to DHA that occur following absorption through skin, and now through inhalation of the aerosolized DHA used in spray tanning. In the present study, HEK293T cells were exposed to consumer-relevant concentrations of DHA to examine the cytotoxicity of systemic exposures. HEK293T cells were sensitive to consumer-relevant doses of DHA with an IC50 value of 2.4 ± 0.3 mM. However, cell cycle arrest did not begin until 48 h after DHA exposure. DHA-exposed cells showed altered metabolic activity with decreased mitochondrial function and decreased lactate and ATP production observed within 24 h of exposure. Autofluorescent imaging and NAD+ sensors also revealed an imbalance in the redox cofactors NAD+/NADH within 24 h of exposure. Cell death occurred by autophagy indicated by increases in LC3B and SIRT1. Despite DHA's ability to be converted to DHAP and integrated into metabolic pathways, the metabolic dysfunction and starvation responses observed in the HEK293T cells indicate that DHA does not readily contribute to the energetic pool in these cells.


Assuntos
Autofagia/efeitos dos fármacos , Di-Hidroxiacetona/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , NAD/química , NAD/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Glutationa/análise , Células HEK293 , Humanos , Mitocôndrias/metabolismo , NAD/análise , Relação Estrutura-Atividade , Células Tumorais Cultivadas
13.
Chem Res Toxicol ; 31(6): 510-519, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29799191

RESUMO

Bisphenol A (BPA) is used heavily in the production of polycarbonate plastics, thermal receipt paper, and epoxies. Ubiquitous exposure to BPA has been linked to obesity, diabetes, and breast and reproductive system cancers. Resistance to chemotherapeutic agents has also been shown in cancer cell models. Here, we investigated BPA's ability to confer resistance to camptothecin (CPT) in mouse embryonic fibroblasts (MEFs). MEFs are sensitive to CPT; however, co-exposure of BPA with CPT improved cell survival. Co-exposure significantly reduced Top1-DNA adducts, decreasing chromosomal aberrations and DNA strand break formation. This decrease occurs despite BPA treatment increasing the protein levels of Top1. By examining chromatin structure after BPA exposure, we determined that widespread compaction and loss of nuclear volume occurs. Therefore, BPA reduced CPT activity by reducing the accessibility of DNA to Top1, inhibiting DNA adduct formation, the generation of toxic DNA strand breaks, and improving cell survival.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Compostos Benzidrílicos/farmacologia , Camptotecina/farmacologia , Fibroblastos/efeitos dos fármacos , Fenóis/farmacologia , Inibidores da Topoisomerase I/farmacologia , Animais , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , DNA/metabolismo , Adutos de DNA/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , DNA Topoisomerases Tipo I/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Fibroblastos/citologia , Instabilidade Genômica , Camundongos
14.
J Vis Exp ; (127)2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28930988

RESUMO

Highly coordinated DNA repair pathways exist to detect, excise and replace damaged DNA bases, and coordinate repair of DNA strand breaks. While molecular biology techniques have clarified structure, enzymatic functions, and kinetics of repair proteins, there is still a need to understand how repair is coordinated within the nucleus. Laser micro-irradiation offers a powerful tool for inducing DNA damage and monitoring the recruitment of repair proteins. Induction of DNA damage by laser micro-irradiation can occur with a range of wavelengths, and users can reliably induce single strand breaks, base lesions and double strand breaks with a range of doses. Here, laser micro-irradiation is used to examine repair of single and double strand breaks induced by two common confocal laser wavelengths, 355 nm and 405 nm. Further, proper characterization of the applied laser dose for inducing specific damage mixtures is described, so users can reproducibly perform laser micro-irradiation data acquisition and analysis.


Assuntos
Quebras de DNA de Cadeia Dupla , Quebras de DNA de Cadeia Simples , Reparo do DNA , DNA/efeitos da radiação , Animais , Células CHO , Cricetulus , Humanos , Lasers
15.
Mol Cancer Res ; 11(8): 845-55, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23671329

RESUMO

UNLABELLED: Fostriecin is a natural product purified from Sterptomyces extracts with antitumor activity sufficient to warrant human clinical trials. Unfortunately, difficulties associated with supply and stable drug formulation stalled further development. At a molecular level, fostriecin is known to act as a catalytic inhibitor of four PPP-family phosphatases, and reports describing the design of molecules in this class suggest derivatives targeting enzymes within the fostriecin-sensitive subfamily can be successful. However, it is not clear if the tumor-selective cytotoxicity of fostriecin results from the inhibition of a specific phosphatase, multiple phosphatases, or a limited subset of fostriecin sensitive phosphatases. How the inhibition of sensitive phosphatases contributes to tumor-selective cytotoxicity is also not clear. Here, high-content time-lapse imaging of live cells revealed novel insight into the cellular actions of fostriecin, showing that fostriecin-induced apoptosis is not simply induced following a sustained mitotic arrest. Rather, apoptosis occurred in an apparent second interphase produced when tetraploid cells undergo mitotic slippage. Comparison of the actions of fostriecin and antisense-oligonucleotides specifically targeting human fostriecin-sensitive phosphatases revealed that the suppression PP4C alone is sufficient to mimic many actions of fostriecin. Importantly, targeted suppression of PP4C induced apoptosis, with death occurring in tetraploid cells following mitotic slippage. This effect was not observed following the suppression of PP1C, PP2AC, or PP5C. These data clarify PP4C as a fostriecin-sensitive phosphatase and demonstrate that the suppression of PP4C triggers mitotic slippage/apoptosis. IMPLICATIONS: Future development of fostriecin class inhibitors should consider PP4C as a potentially important target. Mol Cancer Res; 11(8); 845-55. ©2013 AACR.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Mitose/efeitos dos fármacos , Fosfoproteínas Fosfatases/antagonistas & inibidores , Polienos/farmacologia , Pironas/farmacologia , Relação Dose-Resposta a Droga , Células HeLa , Humanos , Mimetismo Molecular , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Proteína Fosfatase 1/antagonistas & inibidores , Proteína Fosfatase 1/metabolismo , Proteína Fosfatase 2/antagonistas & inibidores , Proteína Fosfatase 2/metabolismo , Tetraploidia
16.
Exp Cell Res ; 318(10): 1086-93, 2012 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-22504047

RESUMO

HSP40 family member MRJ (DNAJB6) has been in the spot light for its relevance to Huntington's, Parkinson's diseases, limb-girdle muscular dystrophy, placental development, neural stem cells, cell cycle and malignancies such as breast cancer and melanoma. This gene has two spliced variants coding for 2 distinct proteins with significant homology. However, MRJ(L) (large variant) is predominantly localized to the nucleus whereas MRJ(S) (small variant) is predominantly cytoplasmic. Interestingly MRJ(S) translocates to the nucleus in response to heat shock. The classical heat shock proteins respond to crises (stress) by increasing the number of molecules, usually by transcriptional up-regulation. Our studies imply that a quick increase in the molar concentration of MRJ in the nuclear compartment is a novel method by which MRJ responds to stress. We found that MRJ(S) shows NLS (nuclear localization signal) independent nuclear localization in response to heat shock and hypoxia. The specificity of this response is realized due to lack of such response by MRJ(S) when challenged by other stressors, such as some cytokines or UV light. Deletion analysis has allowed us to narrow down on a 20 amino acid stretch at the C-terminal region of MRJ(S) as a potential stress sensing region. Functional studies indicated that constitutive nuclear localization of MRJ(S) promoted attributes of malignancy such as proliferation and invasiveness overall indicating distinct phenotypic characteristics of nuclear MRJ(S).


Assuntos
Transporte Ativo do Núcleo Celular , Proteínas de Choque Térmico HSP40/metabolismo , Resposta ao Choque Térmico , Chaperonas Moleculares/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Sinais de Localização Nuclear/metabolismo , Animais , Células COS , Hipóxia Celular , Movimento Celular , Núcleo Celular/metabolismo , Proliferação de Células , Chlorocebus aethiops , Proteínas de Choque Térmico HSP40/química , Humanos , Chaperonas Moleculares/química , Proteínas do Tecido Nervoso/química , Sinais de Localização Nuclear/química , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA